4.7 Article

Brain tissue deforms similarly to filled elastomers and follows consolidation theory

期刊

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
卷 54, 期 12, 页码 2592-2620

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2006.05.004

关键词

soft tissue; biphasic material; human brain; elasticity; Terzaghi consolidation

向作者/读者索取更多资源

Slow, large deformations of human brain tissue-accompanying cranial vault deformation induced by positional plagiocephaly, occurring during hydrocephalus, and in the convolutional development-has surprisingly received scarce mechanical investigation. Since the effects of these deformations may be important, we performed a systematic series of in vitro experiments on human brain tissue, revealing the following features. (i) Under uniaxial (quasi-static), cyclic loading, brain tissue exhibits a peculiar nonlinear mechanical behaviour, exhibiting hysteresis, Mullins effect and residual strain, qualitatively similar to that observed in filled elastomers. As a consequence, the loading and unloading uniaxial curves have been found to follow the Ogden nonlinear elastic theory of rubber (and its variants to include Mullins effect and permanent strain). (ii) Loaded up to failure, the shape of the stress/strain curve qualitatively changes, evidencing softening related to local failure. (iii) Uniaxial (quasi-static) strain experiments under controlled drainage conditions provide the first direct evidence that the tissue obeys consolidation theory involving fluid migration, with properties similar to fine soils, but having much smaller volumetric compressibility. (iv) Our experimental findings also support the existence of a viscous component of the solid phase deformation. Brain tissue should, therefore, be modelled as a porous, fluid-saturated, nonlinear solid with very small volumetric (drained) compressibility. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据