4.2 Article

Substrate-inducible versions of internal alternative NADH:: ubiquinone oxidoreductase from Yarrowia lipolytica

期刊

YEAST
卷 23, 期 16, 页码 1129-1136

出版社

WILEY
DOI: 10.1002/yea.1426

关键词

NADH : ubiquinone oxidoreductase; NADH dehydrogenase; Yarrowia lipolytica; mitochondria

向作者/读者索取更多资源

In standard laboratory strains of the obligate aerobic yeast Yarrowia lipolytica, respiratory chain complex I (proton-translocating NADH : ubiquinone oxidoreductase) is an essential enzyme, since alternative NADH dehydrogenase activity is located exclusively at the external face of the mitochondrial inner membrane. Deletions and other loss-of-function mutations in genes for nuclear coded subunits of complex I can be obtained only when an internal version of the latter enzyme, termed NDH2i, is introduced. In contrast to recent findings with Neurospora crassa, external alternative NADH dehydrogenase activity is dispensable in complex I deletion strains of Y. lipolytica. We used regulable promoters to create strains which express internal alternative NADH dehydrogenase in a substrate-dependent manner. The ability to switch between complex I-dependent and -independent mode of growth simply by changing the carbon source is an important prerequisite for screens for both loss-of-function and inhibitor resistance mutation. The isocitrate lyase promoter (pICL1), in combination with a NDH2i allele that results in reduced expression and activity, was most promising. In the presence of complex I inhibitors, this construct allowed growth on acetate, but not on glucose minimal media. A somewhat higher background was observed with the acyl-CoA oxidase 2 (pPOX2) promoter on glucose minimal media. Copyright (c) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据