4.7 Article Proceedings Paper

On the improvement of walking performance in natural environments by a compliant adaptive gait

期刊

IEEE TRANSACTIONS ON ROBOTICS
卷 22, 期 6, 页码 1240-1253

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2006.884343

关键词

compliance control; gait adaptation; legged locomotion; stability criteria

类别

向作者/读者索取更多资源

It is a widespread idea that animal-legged locomotion is better than wheeled locomotion on natural rough terrain. However, the use of legs as a locomotion system for vehicles and robots still has a long way to go before it can compete with wheels and trucks, even on natural ground. This paper aims to solve two main disadvantages plaguing walking robots: their inability to react to external disturbances (which is also a drawback of wheeled robots); and their extreme slowness. Both problems are reduced here by combining: 1) a gait-parameter-adaptation method that maximizes a dynamic energy stability margin and 2) an active-compliance controller with a new term that compensates for stability variations, thus helping the robot react stably in the face of disturbances. As a result, the combined gait-adaptation approach helps the robot achieve faster, more stable compliant motions than conventional controllers. Experiments performed with the SILO4 quadruped robot show a relevant improvement in the walking gait.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据