4.4 Article

Microscopic analysis of extreme nonlinear optics in semiconductor nanostructures

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.23.002559

关键词

-

类别

向作者/读者索取更多资源

A microscopic analysis is presented for the extreme nonlinear optical response of semiconductor quantum wells and wires after intense excitation with femtosecond laser pulses. In this regime, the light-matter interaction is the dominant eneregy scale, leading to a number of interesting effects such as carrier-wave Rabi flopping, Mellow splitting, and the creation of higher harmonies. The results presented here were obtained by evaluating the semiconductor Bloch equations without the rotating wave approximation. The electronic dispersion of semiconductor nanostructures is shown to have a characteristic influence on the extreme nonlinear optical response, whereas the relative importance of the carrier Coulomb interaction decreases with increasing excitation intensities. (c) 2006 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据