4.5 Article

Use of an aggressive MCF-7 cell line variant, TMX2-28, to study cell invasion in breast cancer

期刊

MOLECULAR CANCER RESEARCH
卷 4, 期 12, 页码 905-913

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-06-0147

关键词

-

资金

  1. NIEHS NIH HHS [R01 ES09795, K02 ES000384] Funding Source: Medline
  2. NIGMS NIH HHS [GM65188] Funding Source: Medline

向作者/读者索取更多资源

An estrogen receptor-negative variant of the MCF-7 breast cancer cell line, TMX2-28, was used as a model in which to study breast cancer cell invasion. Using a reconstituted basement membrane (Matrigel) assay to evaluate cell invasion, we determined that TMX2-28 cells are more invasive than MCF-7 cells and that the invasiveness of TMX2-28 is similar to that of the aggressive MDA-MB-231 breast cancer cell line. TMX2-28 cells displayed a rounded, epithelial cell-like morphology, suggesting an amoeboid mode of cell invasion, in contrast to the mesenchymal mode of invasion characteristic of spindle-shaped, fibroblast-like MDA-MB-231 cells. Using real-time reverse transcription-PCR, we found that mitogen-inducible gene 2 (MIG2) is expressed at a 17-fold higher level in TMX2-28 cells than in nonaggressive MCF-7 cells and that MIG2 mRNA levels are low in the nontumorigenic human mammary epithelial cell line, 184. We determined that MIG2 plays a role in cell invasion by using small interfering RNA (siRNA) to suppress the expression of MIG2 mRNA levels in TMX2-28 cells. TMX2-28 cell invasion was reduced by 48% when the cells were transfected with siRNAs targeting MIG2, relative to cells transfected with siRNAs against glyceraldehyde-3-phosphate dehydrogenase. Finally, MW expression was evaluated in reductive mammoplasty and breast tumor tissue. Although all 21 normal tissues from reduction mammoplasty showed immunoreactivity for MIG2, ranging from weak (62%) to strong (24%), only half of the 34 formalin-fixed breast tumors showed immunoreactivity for MIG2. Of these 17 positive cases, 10 were considered to overexpress MIG2 (moderate to strong staining). Examination of 30 frozen breast tumors supported the finding that MIG2 is overexpressed in a subset of breast cancers. We suggest that MIG2's normal regulation and function are disrupted in breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据