4.6 Article

Quantum master equation for electron transport through quantum dots and single molecules

期刊

PHYSICAL REVIEW B
卷 74, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.235309

关键词

-

向作者/读者索取更多资源

A quantum master equation (QME) is derived for the many-body density matrix of an open current-carrying system weakly-coupled to two metal leads. The dynamics and the steady-state properties of the system for arbitrary bias are studied using projection operator techniques, which keep track of the number of electrons in the system. We show that coherences between system states with different number of electrons, n (Fock space coherences), do not contribute to the transport to second order in system-lead coupling. However, coherences between states with the same n may effect transport properties when the damping rate is of the order of or faster than the system Bohr frequencies. For large bias, when all the system many-body states lie between the chemical potentials of the two leads, we recover previous results. In the rotating wave approximation (when the damping is slow compared to the Bohr frequencies), the dynamics of populations and coherences in the system eigenbasis are decoupled. The QME then reduces to a birth and death master equation for populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据