4.7 Article

Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng

期刊

PLANT AND CELL PHYSIOLOGY
卷 47, 期 12, 页码 1653-1662

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcl032

关键词

ginsenoside; 2,3-oxidosqualene cyclases; RNAi; saponins; triterpene

向作者/读者索取更多资源

Panax ginseng is one of the most highly valued herbal medicines in the Orient, where it has gained an almost magical reputation for being able to maintain the quality of life. The root of ginseng contains noble tetracyclic triterpenenoid saponins ( ginsenosides), which are thought to be the major effective ingredients in P. ginseng. The first committed step in ginsenoside synthesis is the cyclization of 2,3-oxidosqualene to dammarenediol II by oxidosqualene cyclase, dammarenediol synthase (DDS). The gene encoding DDS has been characterized. Here, we investigated the expression of the DDS gene together with the genes involved in ginsenoside biosynthesis ( SS, SE, PNX, PNY, PNY2 and PNZ). Expression of DDS mRNA was higher in flower buds compared with root, leaf and petiole of ginseng plants. Elicitor ( methyl jasmonate) treatment up-regulated the expression of DDS mRNA. Ectopic expression of DDS in a yeast mutant (erg7) lacking lanosterol synthase resulted in the production of dammarenediol and hydroxydammarenone which were confirmed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC/APCIMS). RNA interference (RNAi) of DDS in transgenic P. ginseng resulted in silencing of DDS expression which leads to a reduction of ginsenoside production to 84.5% in roots. These results indicate that expression of DDS played a vital role in the biosynthesis of ginsenosides in P. ginseng.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据