4.4 Article Proceedings Paper

Signaling mechanisms underlying metamorphic transitions in animals

期刊

INTEGRATIVE AND COMPARATIVE BIOLOGY
卷 46, 期 6, 页码 743-759

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/icb/icl023

关键词

-

类别

向作者/读者索取更多资源

Metamorphosis in many animal groups involves a radical transition from a larval to a juvenile/adult body plan and the challenge of orchestrating 2 overlapping developmental programs simultaneously, that is, larval development and juvenile development. Metamorphic competence directly precedes this radical change in morphology and can be best described as the developmental potential of a larva to undergo the radical transition in response to internal or external signals. Several studies have employed genomic approaches (for example, microarrays or subtractive hybridization methods) to gain insights into the complexity of changes in gene expression associated with metamorphic transitions. Availability of this technology for an increasing number of organisms from diverse taxonomic groups expands the scope of species for which we can gain detailed understanding of the genetic and epigenetic architecture underlying metamorphosis. Here, we review metamorphosis in insects, amphibians, and several marine invertebrate species including the sea hare Aplysia californica and summarize mechanisms underlying the transition. We conclude that all metamorphoses share at least 4 components: (1) the differentiation of juvenile/adult structures, (2) the degeneration of larval structures, (3) metamorphic competence, and (4) change in habitat. While transcription levels detected by microarray or other molecular methods can vary significantly, some similarities can be observed. For example, transcripts related to stress response, immunity, and apoptosis are associated with metamorphosis in all investigated phyla. It also appears that signaling mediated by hormones and by nitric oxide can contribute to these stress-related responses and that these molecules can act as regulators of metamorphic transitions. This might indicate either that all of these distantly related organisms inherited the same basic regulatory machinery that was employed by their most recent common ancestor (RCA) in orchestrating life history transitions. Alternatively, these regulatory modules may have been used by the RCA for other purposes and have been independently co-opted to regulate metamorphic transitions in a variety of distantly related animals. We propose that such instances of independent origin or homoplasy in the evolution of metamorphosis might have resulted from specific constraints in signal transduction pathways. Modern genomic tools can help to further explore homoplastic signaling modules when used in a comparative context.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据