4.8 Article

Transformation pathways of silica under high pressure

期刊

NATURE MATERIALS
卷 5, 期 12, 页码 977-981

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1760

关键词

-

向作者/读者索取更多资源

Network-forming oxides with rigid polyhedral building blocks often possess significant capacity for densification under pressure owing to their open structures. The high-pressure behaviour of these oxides is key to the mechanical properties of engineering materials and geological processes in the Earth's interior. Concurrent molecular-dynamics simulations and first-principles calculations reveal that this densification follows a ubiquitous two-stage mechanism. First, a compact high-symmetry anion sublattice forms, as controlled by strong repulsion between the large oxygen anions, and second, cations redistribute onto the newly created interstices. The same mechanism is observed for two different polymorphs of silica, and in the particular case of cristobalite, is corroborated by the experimental finding of a previously unidentified metastable phase. Our simulations not only clarify the nature of this phase, but also identify its occurrence as key evidence in support of this densification mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据