4.6 Article

Quantum dynamics in splitting a harmonically trapped Bose-Einstein condensate by an optical lattice: Truncated Wigner approximation

期刊

PHYSICAL REVIEW A
卷 74, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.74.063625

关键词

-

向作者/读者索取更多资源

We study the splitting of a harmonically trapped atomic Bose-Einstein condensate when we continuously turn up an optical lattice (or a double-well) potential. As the lattice height is increased, quantum fluctuations of atoms are enhanced. The resulting nonequilibrium dynamics of the fragmentation process of the condensate, the loss of the phase coherence of atoms along the lattice, and the reduced atom number fluctuations in individual lattice sites are stochastically studied within the truncated Wigner approximation. We perform a detailed study of the effects of temperature and lattice height on atom dynamics, and investigate the validity of the classical Gross-Pitaevskii equation in optical lattices. We find the atom number squeezing to saturate in deep lattices due to nonadiabaticity in turning up of the lattice potential that is challenging to avoid in experiments when the occupation number of the lattice sites is large, making it difficult to produce strongly number squeezed (or the Mott insulator) states with large filling factors. We also investigate some general numerical properties of the truncated Wigner approximation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据