4.8 Article

Predicting the partitioning behavior of various highly fluorinated compounds

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 40, 期 23, 页码 7298-7304

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es060744y

关键词

-

向作者/读者索取更多资源

Due to their high degree of fluorination, highly fluorinated compounds (HFCs) have unique substance properties that differ from many other organic contaminants. To predict the environmental behavior of HFCs, models that predict both absorptive and adsorptive partitioning are needed; however, the accuracy of existing models has not heretofore been thoroughly investigated for these compounds. This report has two parts: first we show that a well-established polyparameter linear free energy relationship used to predict experimental adsorption constants underestimates values for HFCs by several orders of magnitude. We found a mechanistic explanation for the model's inaccuracy and adjusted it accordingly. In the second part of this report, we evaluate various models that predict saturated subcooled liquid vapor pressure (p(L)*), air-water partition constant (K-aw), and the octanol-water partition constant (K-ow) based on molecular structure. These parameters are typically required for general environmental fate and transport models. Here, we found that SPARC and COSMOtherm make predictions usually within 1 order of magnitude of the experimental value, while the commonly used EPI SUITE and ClogP perform more inaccurately. The least accurate predictions occurred with ClogP for the fluorotelomer alcohols, where the estimated values were off by 2 to almost 5 orders of magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据