4.6 Review

A decade of piezoresponse force microscopy: Progress, challenges, and opportunities

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2006.169

关键词

-

向作者/读者索取更多资源

Coupling between electrical and mechanical phenomena is a near-universal characteristic of inorganic and biological systems alike, with examples ranging from piezoelectricity in ferroelectric perovskites to complex, electromechanical couplings in electromotor proteins in cellular membranes. Understanding electromechanical functionality :in materials such as ferroelectric nanocrystals and thin films, relaxor ferroelectrics, and biosystems requires probing these properties on the nanometer level of individual grain, domain, or protein fibril. In the last decade, piezoresponse force microscopy (PFM) was established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric materials. Here, we present principles and recent advances in PFM, including vector and frequency-dependent imaging of piezoelectric materials, briefly review applications for ferroelectric materials, discuss prospects for electromechanical imaging of local crystallographic and molecular orientations and disorder, and summarize future challenges and opportunities for PFM emerging in the second decade since its invention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据