4.6 Article

Rapid determination of complex mixtures by dual-column gas chromatography with a novel stationary phase combination and spectrometric detection

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1135, 期 2, 页码 230-240

出版社

ELSEVIER
DOI: 10.1016/j.chroma.2006.09.086

关键词

ionic liquids; gas chromatography; tunable selectivity; differential mobility spectrometry; modeling

向作者/读者索取更多资源

Fast GC separations of a broad range of analytes are demonstrated using a capillary column coated with a novel immobilized ionic liquid (IIL) stationary phase. Both completely cross-linked and partially cross-linked columns were evaluated, yielding similar to 1600 and similar to 2000 theoretical plates per meter, respectively. Enhanced separation is demonstrated using a dual-column ensemble comprised of an IIL column, a commercially coated Rtx-1 column, and a pneumatic valve connecting the inlet to the junction point between the two columns. Enhanced separation of 20 components, with two sets of co-eluting peaks is shown in similar to 150 s, while sacrificing only a length of time equivalent to the sum of the stop flow pulses, or about 15.5 s. A novel application of a band trajectory model that shows band position as a function of analysis time as analytes move through the column ensemble is employed to determine pulse application times. The model predicts component retention times within a few seconds. Another method of selectivity enhancement of the IIL stationary phase-coated columns is demonstrated using a differential mobility spectrometer (DMS) that provides a second dimension separation based on ion mobility in a high-frequency electrical field. The DMS is able to separate all but one set of co-eluting components from the IIL column. The separation of 13 components found in the headspace above U.S. currency is demonstrated using the IIL column in a dual-column ensemble as well as with the DMS. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据