4.7 Article

Neuroadaptive combined lateral and longitudinal control of highway vehicles using RBF networks

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2006.883113

关键词

automated highway vehicle; intelligent vehicle highway system (IVHS); lateral and longitudinal control; neural networks (NNs); vehicle dynamics

向作者/读者索取更多资源

A neural network (NN) adaptive model-based combined lateral and longitudinal vehicle control algorithm for highway applications is presented in this paper. The controller is synthesized using a proportional plus derivative control coupled with an online adaptive neural module that acts as a dynamic compensator to counteract inherent model discrepancies, strong nonlinearities, and coupling effects. The closed-loop stability issues of this combined control, scheme are analyzed using a Lyapunov-based method. The neurocontrol approach can guarantee the uniform ultimate bounds of the tracking errors and bounds of NN weights. A complex nonlinear three-degree-of-freedom dynamic model of a passenger wagon is developed to simulate the vehicle motion and for controller design. The controller is tested and verified via computer simulations in the presence of parametric uncertainties and severe driving conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据