4.7 Article

Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury

期刊

FASEB JOURNAL
卷 20, 期 14, 页码 2624-+

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.06-5097fje

关键词

antioxidant response element; hypoxia; ischemic preconditioning; NQO1

资金

  1. PHS HHS [R01 N100K] Funding Source: Medline
  2. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

Tissue reoxygenation following hypoxia is associated with ischemia-reperfusion injury (IRI) and may signal the development of ischemic preconditioning, an adaptive state that is protective against subsequent IRI. Here we used microarray RNA analysis of in vivo and in vitro models of IRI to delineate the underlying molecular mechanisms. Microarray analysis of renal tissue after ischemia-reperfusion revealed a number of highly up-regulated antioxidant genes including aldehyde dehydrogenases (ALDH1A1 and ALDH1A7), glutathione S-transferases (GSTM5, GSTA2 and GSTP1), and NAD(P) H quinone oxidoreductase (NQO1). The transcription factor NF-E2-related factor-2 (Nrf2), a master regulator of this antioxidant response, is also elevated in IRI. Furthermore, microarray analysis of renal epithelial cells exposed to hypoxia/reoxygenation identified Nrf2 to be up-regulated on reoxygenation. We also reveal a reoxygenationspecific nuclear accumulation of Nrf2 protein and subsequent activation of a NQO1 promoter reporter construct. Attenuating reactive oxygen species (ROS) in reoxygenation using the antioxidant N-acetyl cysteine results in inhibition of Nrf-2 activation. mRNA levels for Nrf2-dependent genes were detected in human liver biopsy 1 h after transplantation. These results indicate that reoxygenation-dependent Nrf-2 activity facilitates ischemic preconditioning through the induction of antioxidant gene expression and that ROS may be critical in signaling this event.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据