4.7 Article Proceedings Paper

Apathy and the basal ganglia

期刊

JOURNAL OF NEUROLOGY
卷 253, 期 -, 页码 54-61

出版社

DR DIETRICH STEINKOPFF VERLAG
DOI: 10.1007/s00415-006-7012-5

关键词

striatum; pallidum; prefrontal cortex; executive functions; cognition; neuropsychologia; Parkinson's disease; progressive supranuclear palsy

向作者/读者索取更多资源

We should like to emphasize the following points: 1. Apathy is defined here as a quantified and observable behavioral syndrome consisting in a quantitative reduction of voluntary (or goal-directed) behaviors; 2. Therefore, apathy occurs when the systems that generate and control voluntary actions are altered; 3. These systems are mostly represented by the different subregions embedded in the Prefrontal cortex (PFC) and in the basal ganglia regions that are closely connected with the PFC; 4. In consequence, clinically, apathy is a prefrontal syndrome either due to direct lesions of the PFC or to lesions of basal ganglia areas that are closely related to the PFC; 5. Apathy is not a single entity but rather heterogeneous. Several different mechanisms may lead to apathy; Because there are several anatomical-functional prefrontal-basal ganglia circuits, the underlying mechanisms responsible for apathy may differ according to which prefrontal-basal ganglia circuit is affected; 6. In this context, apathy is the macroscopic results of the disruption of one or several elementary steps necessary for goal-directed behavior that are subserved by different prefrontal-basal ganglia circuits; 7. Intense apathy is related to caudate nucleus and GPi, disrupting associative and limbic pathways from/to the PFC; 8. in progressive supranuclear palsy (PSP) and focal lesions (caudate nuclei, GPi), apathy may be due to a loss of PFC activation; 9. In Parkinson son's disease (PD), apathy may be due to a loss of signal focalization; 10. More globally, we propose that apathy may be explained by the impact of lesions or dysfunctions of the BG, because these lesions or dysfunctions lead to a loss of amplification of the relevant signal and/or to a loss of temporal and spatial focalization, both of which result in a diminished extraction of the relevant signal within the frontal cortex, thereby inhibiting the capacity of the frontal cortex to select, initiate, maintain and shift programs of action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据