4.4 Article

Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 96, 期 6, 页码 3389-3397

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00101.2006

关键词

-

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

Facilitation is a transient stimulation- induced increase in synaptic response, a ubiquitous form of short- term synaptic plasticity that can regulate synaptic transmission on fast time scales. In their pioneering work, Katz and Miledi and Rahamimoff demonstrated the dependence of facilitation on presynaptic Ca2+ influx and proposed that facilitation results from the accumulation of residual Ca2+ bound to vesicle release triggers. However, this bound Ca2+ hypothesis appears to contradict the evidence that facilitation is reduced by exogenous Ca2+ buffers. This conclusion led to a widely held view that facilitation must depend solely on the accumulation of Ca2+ in free form. Here we consider a more realistic implementation of the bound Ca2+ mechanism, taking into account spatial diffusion of Ca2+, and show that a model with slow Ca2+ unbinding steps can retain sensitivity to free residual Ca2+. We demonstrate that this model agrees with the facilitation accumulation time course and its biphasic decay exhibited by the crayfish inhibitor neuromuscular junction (NMJ) and relies on fewer assumptions than the most recent variants of the free residual Ca2+ hypothesis. Further, we show that the bound Ca2+ accumulation is consistent with Kamiya and Zucker's experimental results, which revealed that photolytic liberation of a fast Ca2+ buffer decreases the synaptic response within milliseconds. We conclude that Ca2+ binding processes with slow unbinding times (tens to hundreds of milliseconds) constitute a viable mechanism of synaptic facilitation at some synapses and discuss the experimental evidence for such a mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据