4.6 Article

2006 Frank Stinchfield Award - Grafting of biocompatible polymer for longevity of artificial hip joints

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.blo.0000246553.33434.5f

关键词

-

向作者/读者索取更多资源

Aseptic loosening induced by wear particles from the polyethylene liner is likely the most common cause of long-term total hip arthroplasty failure. We developed a novel hip polyethylene liner with the surface graft of a biocompatible phospholipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), and previously reported the grafting decreased the short-term production of wear particles And the subsequent bone resorptive responses. For clinical Application, we investigated the stability of the 2-methacryloyloxyethyl phosphorylcholine grafting during sterilization and the wear resistance of the sterilized liner during longer loading comparable to clinical usage. Radiographic spectroscopy confirmed the stability of the 2-methacryloyloxyethyl phosphorylcholine polymer on the liner surface after the gamma irradiation. We used a hip wear simulator up to 1 x 10(7) cycles to test sterilized cross-linked polyethylene liners with and without 2-methacryloyloxyethyl phosphorylcholine engrafting. The 2-methacryloyloxyethyl phosphorylcholine grafting markedly decreased the friction, the production of wear particles, and the wear of the liner surface. These data suggest a marked improvement in the wear resistance of the polyethylene liner by the 2-methacryloyloxyethyl phosphorylcholine grafting for clinically relevant periods after sterilization, indicating 2-methacryloyloxyethyl phosphorylcholine grafting is a promising technology for extending longevity of artificial hips.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据