4.6 Article

The effect of strain-path reversal on cavitation during hot torsion of Ti-6Al-4V

出版社

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11661-006-1063-1

关键词

-

向作者/读者索取更多资源

The effect of strain-path reversal on cavitation behavior during the hot torsion testing of an alpha/beta titanium alloy, Ti-6Al-4V, with a colony-alpha microstructure was established. Optical microscopy was used to measure cavitation parameters such as cavity size, density, and area fraction. It was observed that when the torsion direction is reversed, the cavitation process is reversed as well; i.e., cavity shrinkage takes place. The experimental observations were interpreted in the context of previous models developed for the densification of porous bodies. For this purpose, the models were modified to treat the effect of colony orientation on the local stress state and the accommodation of the externally imposed strain, both of which affect the rate of densification/cavity shrinkage. A modified version of the AFRL PM-consolidation model was shown to provide reasonable estimates of the shrinkage kinetics. An alternate description of cavity shrinkage during reversed torsion, analogous to prior descriptions of cavity growth, was also developed. It was concluded that the absolute magnitude of the cavity shrinkage rate is smaller than its counterpart during growth because the local stress ratio is lower during reversed straining compared to that during forward straining.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据