4.6 Article

O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations

期刊

PHYSICAL REVIEW B
卷 74, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.245101

关键词

-

向作者/读者索取更多资源

An efficient and robust O(N) method is presented for fully self-consistent large-scale ab initio electronic structure calculations. Detailed short range and effective long range contributions to the electronic structure are taken into account by solving an embedded cluster defined in a Krylov subspace, which provides rapid convergent results for not only insulators but also metals. As illustrations of the capability of the method, we present three large-scale calculations based on the density functional theory: (i) calculation of full wave function of DNA, (ii) interaction between a carbon nanotube and metal surface, and (iii) geometry optimization of a boron doped diamond, which clearly show that the method is a promising approach for realization of large-scale ab initio calculations for a wide variety of materials including metals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据