4.3 Article

Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma

期刊

IEEE TRANSACTIONS ON PLASMA SCIENCE
卷 34, 期 6, 页码 2471-2477

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2006.886081

关键词

flame stabilization; lean premixed combustion; optical diagnostics; plasma-assisted combustion

向作者/读者索取更多资源

A nanosecond repetitively pulsed plasma (NRPP) produced by electric pulses of 10 kV during 10 ns at a frequency of up to 30 kHz has been used to stabilize and improve the efficiency of a 25-kW lean turbulent premixed propane/air flame (Re-D = 30 000) at atmospheric pressure. We show that, when placed in the recirculation zone of the flow, the plasma significantly increases the heat release and the combustion efficiency, thus allowing to stabilize the flame under lean conditions where it would not exist without plasma. Stabilization is obtained with a very low level of plasma power of about 75 W, or 0.3% of the maximum power of the flame. In addition, they find that at high flow rates, where the flame should normally blow out, the NRPP allows the existence of an intermittent V-shaped flame with significant heat release, and at even higher flow rates the existence of a small dome-shaped flame confined near. the electrodes that can serve as a pilot flame to reignite the combustor. Optical emission spectroscopy measurements are presented to determine the temperature of the plasma-enhanced flame, the electron number density, and to identify the active species produced by the plasma, namely O, H, and OH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据