4.5 Article

Electron paramagnetic resonance oximetry as a quantitative method to measure cellular respiration: A consideration of oxygen diffusion interference

期刊

BIOPHYSICAL JOURNAL
卷 91, 期 12, 页码 4623-4631

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1529/biophysj.106.090175

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL078796, R01 HL078796-02] Funding Source: Medline
  2. NIBIB NIH HHS [R21 EB004658] Funding Source: Medline

向作者/读者索取更多资源

Electron paramagnetic resonance (EPR) oximetry is being widely used to measure the oxygen consumption of cells, mitochondria, and submitochondrial particles. However, further improvement of this technique, in terms of data analysis, is required to use it as a quantitative tool. Here, we present a new approach for quantitative analysis of cellular respiration using EPR oximetry. The course of oxygen consumption by cells in suspension has been observed to have three distinct zones: pO(2)-independent respiration at higher pO(2) ranges, pO(2)-dependent respiration at low pO(2) ranges, and a static equilibrium with no change in pO2 at very low pO2 values. The approach here enables one to comprehensively analyze all of the three zones together - where the progression of O-2 diffusion zones around each cell, their overlap within time, and their potential impact on the measured pO(2) data are considered. The obtained results agree with previously established methods such as high-resolution respirometry measurements. Additionally, it is also demonstrated how the diffusion limitations can depend on cell density and consumption rate. In conclusion, the new approach establishes a more accurate and meaningful model to evaluate the EPR oximetry data on cellular respiration to quantify related parameters using EPR oximetry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据