4.2 Article

Defects in allene oxide synthase and 12-oxa-phytodienoic acid reductase alter the resistance to Pseudomonas syringae and Botrytis cinerea

期刊

JOURNAL OF PHYTOPATHOLOGY
卷 154, 期 11-12, 页码 740-744

出版社

WILEY
DOI: 10.1111/j.1439-0434.2006.01191.x

关键词

Arabidopsis; jasmonic acid; 12-oxophytodienoic acid; pathogens

向作者/读者索取更多资源

Jasmonic acid and its methyl ester are signalling molecules involved in regulating development and stress responses in plants. 12-Oxo-phytodienoic acid, a precursor in jasmonic acid biosynthesis, is also biologically active. Both oxylipins accumulate after pathogen infection. To understand the function of 12-oxo-phytodienoic acid vs. jasmonic acid in plant pathogen interactions, the susceptibility of the dde2 mutant, defective in 12-oxo-phytodienoic acid and jasmonic acid biosynthesis and the opr3 mutant, which synthesizes 12-oxo-phytodienoic acid but not jasmonic acid was investigated. dde2 and opr3 were more resistant to Pseudomonas syringae. The effect was stronger in the dde2 mutant as in opr3 indicating that both oxylipins regulate pathogen resistance to P. syringae. dde2 was more susceptible to Botrytis cinerea suggesting that 12-oxo-phytodienoic acid is important in mediating the defence against B. cinerea. Expression of Pr1 and Pr2 was increased in both mutants after mock infiltration but not or only slightly enhanced after P. syringae infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据