4.6 Article

Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel

期刊

CHEMICAL ENGINEERING SCIENCE
卷 61, 期 23, 页码 7609-7625

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2006.08.073

关键词

fluid mechanics; multiphase flow; hydrodynamics; numerical simulation; microchannel

向作者/读者索取更多资源

The rapid development of microfabrication techniques creates new opportunities for applications of microchannel reactor technology in chemical reaction engineering. The extremely large surface-to-volume ratio and the short transport path in microchannels enhance heat and mass transfer dramatically, and hence provide many potential opportunities in chemical process development and intensification. Multiphase reactions involving gas/liquid reactants with a solid as a catalyst are ubiquitous in chemical and pharmaceutical industries. The hydrodynamics of the flow affects the reactor performance significantly; therefore it plays a prominent role in reactor design. For gas/liquid two-phase flow in a microchannel, the Taylor slug flow regime is the most commonly encountered flow pattern. The present study deals with the numerical simulation of the Taylor flow in a microchannel, particularly on gas and liquid slugs. A T-junction empty microchannel with varying cross-sectional width (0.25, 0.5, 0.75, 1, 2 and 3 mm) served as the model micro-reactor, and a finite volume based commercial computational fluid dynamics (CFD) package, FLUENT, was adopted for the numerical simulation. The gas and liquid slug lengths at various operating and fluid conditions were obtained and found to be in good agreement with the literature data. Several correlations in the T-junction microchannel were developed based on the simulation results. The slug flows for other geometries and inlet conditions were also studied. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据