4.6 Article Proceedings Paper

Phylogenomic investigation of CR1 LINE diversity in reptiles

期刊

SYSTEMATIC BIOLOGY
卷 55, 期 6, 页码 902-911

出版社

OXFORD UNIV PRESS
DOI: 10.1080/10635150601091924

关键词

amniote; CR1 LINE; phylogenomics; Reptilia; retroelement; RT domain

向作者/读者索取更多资源

It is unlikely that taxonomically diverse phylogenetic studies will be completed rapidly in the near future for nonmodel organisms on a whole-genome basis. However, one approach to advancing the field of phylogenomics is to estimate the structure of poorly known genomes by mining libraries of clones from suites of taxa, rather than from single species. The present analysis adopts this approach by taking advantage of megabase-scale end-sequence scanning of reptilian genomic clones to characterize diversity of CR1-like LINEs, the dominant family of transposable elements (TEs) in the sister group of mammals. As such, it helps close an important gap in the literature on the molecular systematics and evolution of retroelements in nonavian reptiles. Results from aligning more than 14 Mb of sequence from the American alligator (Alligator mississippiensis), painted turtle (Chrysemys picta), Bahamian green anole (Anolis smaragdinus.), Tuatara (Sphenodon punctatus), Emu (Dromaius novaehollandiae), and Zebra Finch (Taeniopygia guttata) against a comprehensive library similar to 3000 TE-encoding peptides reflect an increasing abundance of LINE and non-long-terminal-repeat (non-LTR) retrotransposon repeat types with the age of common ancestry among exemplar reptilian clades. The hypothesis that repeat diversity is correlated with basal metabolic rate was tested using comparative methods and a significant nonlinear relationship was indicated. This analysis suggests that the age of divergence between an exemplary clade and its sister group as well as metabolic correlates should be considered in addition to genome size in explaining patterns of retroelement diversity. The first phylogenetic analysis of the largely unexplored chicken repeat 1 (CR1) 3'reverse transcriptase (RT) conserved domains 8 and 9 in nonavian reptiles reveals a pattern of multiple lineages with variable branch lengths, suggesting presence of both old and young elements and the existence of several distinct well-supported clades not apparent from previous characterization of CR1 subfamily structure in birds and the turtle. This mode of CRI evolution contrasts with historical patterns of LINE 1 diversification in mammals and hints toward the existence of a rich but still largely unexplored diversity of nonavian retroelements of importance to advancing both comparative vertebrate genomics and amniote systematics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据