4.6 Article

First-principles thermoelasticity of bcc iron under pressure

期刊

PHYSICAL REVIEW B
卷 74, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.214111

关键词

-

向作者/读者索取更多资源

We investigate the elastic and isotropic aggregate properties of ferromagnetic bcc iron as a function of temperature and pressure by computing the Helmholtz free energies for the volume-conserving strained structures using the first-principles linear response linear-muffin-tin-orbital method and the generalized-gradient approximation. We include the electronic excitation contributions to the free energy from the band structures, and phonon contributions from quasiharmonic lattice dynamics. We make detailed comparisons between our calculated elastic moduli and their temperature and pressure dependences with available experimental and theoretical data. The isotropic aggregate sound velocities obtained based on the calculated elastic moduli agree with available ultrasonic and diamond-anvil-cell data. Birch's law, which assumes a linear increase in sound velocity with increasing atomic density, fails for bcc Fe under extreme conditions. First-principles linear-response lattice dynamics is shown to provide a tractable approach to examine the elasticity of transition metals at high pressures and high temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据