4.2 Article

Polystyrene microspheres having epoxy functional dangling chains linked by hydrolytically stable bonds via ATRP

期刊

出版社

WILEY
DOI: 10.1002/pola.21756

关键词

ATRP; crosslinked resin; glycidyl methacrylate; graft copolymer; surface initiator

向作者/读者索取更多资源

We report application of copper-mediated atom transfer radical polymerization in graft copolymerization of glycidyl methacrylate (GMA) from N-bromosulfonamide groups on polystyrene-divinyl benzene (PS-DVB) microspheres (210-420 mu m). The surface initiator groups were introduced by simple modification of crosslinked PS-DV-B (10% mol/mol) beads in three steps: (i) chlorosulfonation, (ii) sulfamidation with propylamine, and (iii) bromination. Initiation from surface-bound N-bromosulfonamide groups showed first-order kinetics (k = 1.04 x 10(-4) s(-1) in toluene at 70 degrees C) and gave poly(GMA) graft chains linked to the surface by hydrolytically stable sulfonamide bonds. High graft yields were attained (up to 294.4% within 21 h) while retaining the epoxy groups. Epoxy content of the resulting product (5.41 mmol g(-1)) revealed an average 17 GMA repeating units in the graft per initiation site. Taking advantage of the hydrolytic stability of sulfonamide linkages and well-known reactivity of the epoxy groups on dangling chains, the hair-like structure of the polymer beads prepared can be considered when devising more efficient functional polymers as catalysts or reagent carriers. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据