4.6 Article

Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 48, 页码 36856-36863

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M607085200

关键词

-

资金

  1. NIDDK NIH HHS [DK72506, DK68196] Funding Source: Medline

向作者/读者索取更多资源

A complex involving Derlin-1 and p97 mediates the retrotranslocation and endoplasmic reticulum (ER)-associated degradation of misfolded proteins in yeast and is used by certain viruses to promote host cell protein degradation (Romisch, K. (2005) Annu. Rev. Cell Dev. Biol. 21, 435-456; Lilley, B. N., and Ploegh, H. L. (2004) Nature 429, 834-840; Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T. A. (2004) Nature 429, 841 847). We asked whether the components of this pathway are involved in the endoplasmic reticulum-associated degradation of the mammalian integral membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), a substrate for the ubiquitin-proteasome system. We report that Derlin-1 and p97 formed complexes with CFTR in human airway epithelial cells. Derlin-1 interacted with nonubiquitylated CFTR, whereas p97 associated with ubiquitylated CFTR. Exogenous expression of Derlin-1 led to its co-localization with CFTR in the ER where it reduced wild type (WT) CFTR expression and efficiently degraded the disease-associated CFTR folding mutants, Delta F508 and G85E (> 90%). Consistent with this, Derlin-1 also reduced the amount of WT or Delta F508 CFTR appearing in detergent-insoluble aggregates. An similar to 70% knockdown of endogenous Derlin-1 by RNA interference increased the steady-state levels of WT and Delta F508 CFTR by 10-15-fold, reflecting its significant role in CFTR degradation. Derlin-1 mediated the degradation of N-terminal CFTR fragments corresponding to the first transmembrane domain of CFTR, but CFTR fragments that incorporated additional domains were degraded less efficiently. These findings suggest that Derlin-1 recognizes misfolded, nonubiquitylated CFTR to initiate its dislocation and degradation early in the course of CFTR biogenesis, perhaps by detecting structural instability within the first transmembrane domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据