4.7 Article

EEG/(f)MRI measurements at 7 Tesla using a new EEG cap (InkCap)

期刊

NEUROIMAGE
卷 33, 期 4, 页码 1082-1092

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2006.07.038

关键词

EEG; MRI; conductive ink; Eddy currents; SAR; motion sensors

资金

  1. NCRR NIH HHS [P41 RR14075] Funding Source: Medline
  2. NIBIB NIH HHS [R01 EB002459] Funding Source: Medline
  3. NICHD NIH HHS [HD 040712] Funding Source: Medline
  4. NINDS NIH HHS [R01 NS037462] Funding Source: Medline

向作者/读者索取更多资源

We aimed at improving the signal-to-noise ratio (SNR) of electroencephalography (EEG) during magnetic resonance imaging (MRI) by introducing a new EEG cap (InkCap) based on conductive ink technology. The InkCap was tested with temperature measurements on an electrically conductive phantom head and during structural and functional MRI (fMRI) recordings in 11 healthy human volunteers at 7 T. Combined EEG/fMRI measurements were conducted to study the interaction between the two modalities. The EEG recordings with the InkCap demonstrated up to a five-fold average decrease in signal variance during echo-planar imaging, with respect to a cap made of standard carbon fiber leads. During concurrent EEG/fMRI measurements in human volunteers, alpha oscillations were clearly detected at 7 T. Minimal artifacts were present in the T2* and high-resolution structural MR images of the brain parenchyma. Our results show that the InkCap technology considerably improves the quality of both EEG and (f)MRI during concurrent measurements even at 7 T. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据