4.0 Article

An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus

出版社

OXFORD UNIV PRESS
DOI: 10.1093/imammb/dql014

关键词

hydrocephalus; poroelasticity; normal pressure hydrocephalus; benign intracranial hypertension; pseudotumor cerebri; idiopathic intracranial hypertension

向作者/读者索取更多资源

We formulate in general terms the equations for axisymmetric and fully 3D models of a hydrocephalic brain. The model is developed using small strain poroelasticity that includes non-linear permeability. The axisymmetric model is solved for four ventricle shapes, an ellipsoid, a 'peanut' shape, a 'cross' shape and a 'bone' shape. The distribution of fluid pressure, velocity and content in the deformed parenchyma for a blocked aqueduct provides new qualitative insight into hydrocepahlus. Some observations are offered for two forms of cerebrospinal fluid flow abnormality, normal pressure hydrocephalus and idiopathic intracranial hypertension. The model is extended to include a gravitational term in the governing equations and the effect of hydrostatic pressure variation is considered. Results of a fully 3D simulations are described for two horn-like lateral ventricles and one case with two lateral ventricles and a third ventricle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据