4.4 Article

Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 96, 期 6, 页码 3323-3337

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00392.2006

关键词

-

资金

  1. NIDCD NIH HHS [DC 02371] Funding Source: Medline

向作者/读者索取更多资源

It has been hypothesized that the primate auditory cortex is composed of at least two processing streams, one of which is believed to selectively process spatial information. To test whether spatial information is differentially encoded in different auditory cortical fields, we recorded the responses of single neurons in the auditory cortex of alert macaque monkeys to broadband noise stimuli presented from 360 in azimuth at four different absolute intensities. Cortical areas tested were core areas A1 and rostral (R), caudal belt fields caudomedial and caudolateral, and more rostral belt fields middle lateral and middle medial ( MM). We found that almost all neurons encountered showed some spatial tuning. However, spatial selectivity measures showed that the caudal belt fields had the sharpest spatial tuning, A1 had intermediate spatial tuning, and areas R and MM had the least spatial tuning. Although most neurons showed their best responses to contralateral space, best azimuths were observed across the entire 360 of tested space. We also noted that although the responses of many neurons were significantly influenced by eye position, eye position did not systematically influence any of the spatially dependent responses that we measured. These data are consistent with the hypothesis that caudal auditory cortical fields in the primate process spatial features more accurately than the core and more rostral belt fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据