4.6 Article

Computationally efficient neural predictive control based on a feedforward architecture

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 45, 期 25, 页码 8575-8582

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie060246y

关键词

-

向作者/读者索取更多资源

A new strategy for integrating system identification and predictive control is proposed. A novel feedforward neural-network architecture is developed to model the system. The network structure is designed so that the nonlinearity can be mapped onto a linear time-varying term. The linear time-varying model is augmented with a Kalman filter to provide disturbance rejection and compensation for model uncertainty. The structure of the model developed lends itself naturally to a neural predictive control formulation. The computational requirements of this strategy are significantly lower than those using the nonlinear neural network, with comparable control performance, as illustrated on a challenging nonlinear chemical reactor and a multivariable process, each with both nonminimum and minimum phase behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据