4.3 Article

Replication arrest-stimulated recombinatin: Dependence on the RecA parapog, RadA/Sms and translesion polymerase, DinB

期刊

DNA REPAIR
卷 5, 期 12, 页码 1421-1427

出版社

ELSEVIER
DOI: 10.1016/j.dnarep.2006.06.008

关键词

DSB repair; replication fork repair; genetic rearrangements; translesion polymerase

资金

  1. NIGMS NIH HHS [GM51753] Funding Source: Medline

向作者/读者索取更多资源

Difficulties in replication can lead to breakage of the fork. Recombinational reactions restore the integrity of the fork through strand-invasion of the broken chromosome with its sister. If this occurs in the context of repeated DNA sequences, genetic rearrangements can result. We have proposed that this process accounts for stimulation of chromosomal rearrangements by mutations in Escherichia coli's replicative DNA helicase, DnaB. At its permissive temperature for growth, a dnaB107 mutant is a 1000-fold more likely to experience a deletion of a 787bp tandem repeated segment inserted in the E. coli chromosome than is a wild-type strain. We have previously shown that enhanced deletion in a dnaB107 strain is reduced in recA, recB and recG102 (formerly known as radC102) derivatives. Here I show that this enhanced recombination is dependent on other factors: the RuvA Holliday junction helicase, the RecJ single-strand DNA exonuclease, the RadA/Sms RecA-paralog protein of unknown function and, surprisingly, the DinB translesion polymerase. The requirement for these factors in DnaB-stimulated rearrangements is much greater than that observed for recombinational events such as P1 transduction. This may be because strand invasion into the repeats limits the extent of heteroduplex DNA that can be formed in the initial stage of recombination. I propose that RadA, RecG and RuvAB are critically required to stabilize the strand-invasion intermediate and that DinB polymerase extends the invading 3' strand to aid in re-initiation. The role of DinB in bacteria may be analogous to translesion DNA polymerase eta in eukaryotes, recently shown to aid recombination. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据