4.7 Article

Adaptive simulation of the subcritical flow past a sphere

期刊

JOURNAL OF FLUID MECHANICS
卷 568, 期 -, 页码 77-88

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112006002679

关键词

-

向作者/读者索取更多资源

Adaptive DNS/LES (direct numerical simulation/large-eddy simulation) is used to compute the drag coefficient CD for the flow past a sphere at Reynolds number Re = 10(4). Using less than 10(5) mesh points, CD is computed to an accuracy of a few percent, corresponding to experimental precision, which is at least an order of magnitude cheaper than standard non-adaptive LES computations in the literature. Adaptive DNS/LES is a General Galerkin G2 method for turbulent flow, where a stabilized Galerkin finite element method is used to compute approximate solutions to the Navier-Stokes equations, with the mesh being adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of interest, in this paper CD. Both the stopping criterion and the mesh refinement strategy are based on a posteriori error estimates, in the form of a space-time integral of residuals multiplied by derivatives of the solution of an associated dual problem, linearized at the approximate solution, and with data coupling to the output of interest. There is no filtering of the equations, and thus no Reynolds stresses are introduced that need modelling. The stabilization in the numerical method is acting as a simple turbulence model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据