4.7 Article

The impact of correlated noise on SuperWASP detection rates for transiting extrasolar planets

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2006.11095.x

关键词

techniques : photometric; planetary systems

资金

  1. STFC [PP/D000890/1, PP/D000955/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [PP/D000890/1, PP/D000955/1] Funding Source: researchfish

向作者/读者索取更多资源

We present a model of the stellar populations in the fields observed by one of the SuperWASP-N cameras in the 2004 observing season. We use the Besancon Galactic model to define the range of stellar types and metallicities present, and populate these objects with transiting extrasolar planets using the metallicity relation of Fischer & Valenti. We investigate the ability of SuperWASP to detect these planets in the presence of realistic levels of correlated systematic noise ('red noise'). We find that the number of planets that transit with a signal-to-noise ratio of 10 or more increases linearly with the number of nights of observations. Based on a simulation of detection rates across 20 fields observed by one camera, we predict that a total of 18.6 +/- 8.0 planets should be detectable from the SuperWASP-N 2004 data alone. The best way to limit the impact of covariant noise and increase the number of detectable planets is to boost the signal-to-noise ratio, by increasing the number of observed transits for each candidate transiting planet. This requires the observing baseline to be increased, by spending a second observing season monitoring the same fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据