4.8 Article

Deprotonations and charges of well-defined {Mo72Fe30} nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 49, 页码 15914-15920

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja066133n

关键词

-

向作者/读者索取更多资源

The solution behavior of the largest inorganic acid known thus far, the neutral, spherical iron/molybdenum/oxide nanocluster {Mo72Fe30} (equivalent to{(Mo-VI)Mo-5(VI)}(12)Fe-30(III) 1a), including the pH-controlled deprotonation, is reported. The acidic properties are due to the 30 peripheral, weakly acidic Fe-III(H2O) groups that form a unique Archimedean solid with all edges and dihedral angles being equal, the icosidodecahedron, and therefore an isotropic surface. Interestingly, the aqueous solutions are stable even for months because of the inertness of the spherical solutes and the presence of the hard FeIII and Mo-VI centers. The stability can be nicely proven by the very characteristic Raman spectrum showing, because of the (approximately) icosahedral symmetry, only a few lines. Whereas the {Mo72Fe30} clusters exist as discrete, almost neutral, molecules in aqueous solution at pH < 2.9, they get deprotonated and self-associate into single-layer blackberry-type structures at higher pH while the assembly process (i.e., the size of the final species) can be controlled by the pH values; this allows the deliberate generation of differently sized nanoparticles, a long-term goal in nanoscience. The average hydrodynamic radius (R-h) of the self-assembled structures decreases monotonically with increasing number of charges on the {Mo72Fe30} macroanions (from similar to 45 nm at pH similar to 3.0 to similar to 15 nm at pH approximate to 6.6), as studied by laser light scattering and TEM techniques. The {Mo72Fe30} macroions with high-stability tunable charges/surfaces, equal shape, and masses provide models for the understanding of more complex polyelectrolyte solutions while the controllable association and dissociation reported here of the assembled soft magnetic materials with tuneable sizes could be interesting for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据