4.6 Article

Climatic effects on ice-jam flooding of the Peace-Athabasca Delta

期刊

HYDROLOGICAL PROCESSES
卷 20, 期 19, 页码 4031-4050

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/hyp.6418

关键词

climate; climatic impact; delta; flood; ice jam; melt; models; snowpack

向作者/读者索取更多资源

The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. In recent decades, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the PAD region. Building on previous work that has identified the salient hydro-climatic factors, the frequency of ice-jam floods is considered under 'present' (1961-1990) and 'future' (2070-2099) climatic conditions. The latter are determined using temperature and precipitation output from the Canadian Climate Centre's second-generation Global Climate Model (CGCM2) for two different greenhouse-gas/sulphate emission scenarios. The analysis indicates that the ice season is likely to be reduced by 2-4 weeks, while future ice covers would be slightly thinner than they are at present. More importantly, a large part of the Peace River basin is expected to experience frequent and sustained mid-winter thaws, leading to significant melt and depleted snowpacks in the spring. Using an empirical relationship between ice-jam flood occurrence and size of the spring snowpack, a severe reduction in the frequency of ice-jam flooding is predicted under both future-climate scenarios that were considered. In turn, this trend is likely to accelerate the loss of aquatic habitat in the PAD region. Implications for potential mitigation and adaptation strategies are discussed. Copyright (c) 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据