4.7 Article

A recombinant human RNASET2 glycoprotein with antitumorigenic and antiangiogenic characteristics - Expression, purification, and characterization

期刊

CANCER
卷 107, 期 12, 页码 2760-2769

出版社

WILEY
DOI: 10.1002/cncr.22327

关键词

antiangiogenic; actin-binding; colon cancer; paclitaxel; RNASET2

类别

向作者/读者索取更多资源

BACKGROUND. Human RNASET2 is a T-2-RNase glycoprotein encoded by the RNASET2 gene, which is located on chromosome 6 (6q27). Deletion in 6q27 is associated with several human malignancies. METHODS. A synthetic RNASET2 gene that was optimized for expression in the yeast Pichia pastoris was designed according to the cDNA sequence and was cloned under the control of the methanol-induced promoter fused to the alpha-matin- secretion peptide. The recombinant protein was purified from the culture supernatant of transformed P. pastoris through an affinity Sepharose-concanavalin A column. Actin-binding activity was examined by membrane blotting using monoclonal mouse antiactin immunoglobulin M and by cross-linking in solution to G-actin using 1-[3-(dimethylamino)propyl]-3-ethyl-carboimide methiodide. The antiangiogenic activity of RNASET2 (from 0.5 mu M to 10 mu M) was assessed by a human umbilical vein endothelial (HUVE) cell assay in the presence of 1 mu g/mL angiogenin, basic fibroblast growth factor (bFGF), or recombinant human vascular endothelial growth factor (VEGF). Cell colony formation was examined in human colon HT29 cancer cells to assess the anti turn origenic activity of RNASET2 or the enzymatic-inactivated RNASET2 (El-RNASET2) (1 mu M each). In an athymic mouse xenograft model, LS174T human cancer cells were injected subcutaneously. When tumors were palpable, the mice were treated for 3 weeks with RNASET2 (1 mg/kg), paclitaxel (10 mg/kg or 15 mg/kg), or a combination of the 2 drugs. RESULTS. The recombinant RNASET2 was identified as a 27-kilodalton glycoprotein that possessed the ability to bind actin in vitro. RNASET2 significantly inhibited clonogenicity in HT29 cells. El-RNASET2 produced a similar effect, suggesting that its antitumorigenic activity is unrelated to its RNase activity. In HUVE cells, RNASET2 inhibited angiogenin-, bFGF-, and VEGF-induced tube formation in a dose-dependent manner. In athymic mice, RNASET2 inhibited the development of an LS174T-derived xenograft by 40%. A synergistic effect was obtained with combined RNASE T2 and paclitaxel treatments. CONCLUSIONS. The current results suggested that RNASET2 represents a new class of antitumorigenic and antiangiogenic drugs, and the findings of this study emphasize the advantage of using agents like RNASET2 in combined therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据