4.4 Article

Magnetic Fe3O4-Au core-shell nanostructures for surface enhanced Raman scattering

期刊

ANNALEN DER PHYSIK
卷 524, 期 11, 页码 670-679

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/andp.201200161

关键词

Plasmonic sensors; core-shell

资金

  1. National Science Foundation (NSF)
  2. CONACyT
  3. [134111]
  4. Directorate For Engineering [0823921] Funding Source: National Science Foundation
  5. Div Of Electrical, Commun & Cyber Sys [0823921] Funding Source: National Science Foundation

向作者/读者索取更多资源

The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe3O4-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe3O4-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe3O4 material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 106, which is similar to 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe3O4-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe3O4-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as hot spots due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe3O4 core, coupled with the optical properties of the Au shell, make the Fe3O4-Au nanoparticles unique for various potential applications including biological sensing and therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据