4.8 Article

Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0605748103

关键词

biomineral; calcite; proteins

资金

  1. NIDDK NIH HHS [R01 DK033501, R01 DK061673, DK33501, DK61673] Funding Source: Medline

向作者/读者索取更多资源

The composition of biologic molecules isolated from biominerals suggests that control of mineral growth is linked to biochemical features. Here, we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement depends on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, E-k, by perturbations that displace water molecules. The result is a decrease in the energy barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge. This insight may contribute to an improved understanding of diverse systems of biomineralization and design of new synthetic growth modulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据