4.7 Article

An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 220, 期 1, 页码 109-138

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2006.05.004

关键词

immersed interface method; Navier-Stokes equations; Cartesian grid method; finite difference; fast Poisson solvers; irregular domains; fluid-membrane interaction

向作者/读者索取更多资源

We present an immersed interface method for the incompressible Navier-Stokes equations capable of handling both rigid and flexible boundaries. The immersed boundaries are represented by a number of Lagrangian control points. In order to ensure that the no-slip condition on the rigid boundary is satisfied, singular forces are applied on the fluid. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of the singular forces at the rigid boundary is determined by solving a small system of equations at each timestep. For flexible boundaries, the forces that the boundary exerts on the fluid are computed from the constitutive relation of the flexible boundary and are applied to the fluid through the jump conditions. The position of the flexible boundary is updated implicitly using a quasi-Newton method (BFGS) within each timestep. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity and the overall scheme is second order accurate. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据