4.8 Article

Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans

期刊

SCIENCE
卷 314, 期 5807, 页码 1898-1903

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1132745

关键词

-

向作者/读者索取更多资源

Human influenza A ( subtype H3N2) is characterized genetically by the limited standing diversity of its hemagglutinin and antigenically by clusters that emerge and replace each other within 2 to 8 years. By introducing an epidemiological model that allows for differences between the genetic and antigenic properties of the virus's hemagglutinin, we show that these patterns can arise from cluster-specific immunity alone. Central to the formulation is a genotype-to-phenotype mapping, based on neutral networks, with antigenic phenotypes, not genotypes, determining the degree of strain cross-immunity. The model parsimoniously explains well-known, as well as previously unremarked, features of interpandemic influenza dynamics and evolution. It captures the observed boom-and-bust pattern of viral evolution, with periods of antigenic stasis during which genetic diversity grows, and with episodic contraction of this diversity during cluster transitions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据