4.6 Article

Vesicular glutamate transporter contains two independent transport machineries

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 51, 页码 39499-39506

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M607670200

关键词

-

向作者/读者索取更多资源

Vesicular glutamate transporters (VGLUTs) are responsible for the vesicular storage of L-glutamate and play an essential role in glutamatergic signal transmission in the central nervous system. The molecular mechanism of the transport remains unknown. Here, we established a novel in vitro assay procedure, which includes purification of wild and mutant VGLUT2 and their reconstitution with purified bacterial F0F1-ATPase (F-ATPase) into liposomes. Upon the addition of ATP, the proteoliposomes facilitated L-glutamate uptake in a membrane potential (Delta psi)-dependent fashion. The ATP-dependent L-glutamate uptake exhibited an absolute requirement for similar to 4 mM Cl-, was sensitive to Evans blue, but was insensitive to D, L-aspartate. VGLUT2s with mutations in the transmembrane-located residues Arg(184), His(128), and Glu(191) showed a dramatic loss in L-glutamate transport activity, whereas Na+-dependent inorganic phosphate (Pi) uptake remained comparable to that of the wild type. Furthermore, Pi transport did not require Cl- and was not inhibited by Evans blue. Thus, VGLUT2 appears to possess two intrinsic transport machineries that are independent of each other: a Delta psi-dependent L-glutamate uptake and a Na+-dependent Pi uptake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据