4.6 Article

The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/nme.1761

关键词

XFEM; MLS; discontinuities; cracks

向作者/读者索取更多资源

A new method for treating arbitrary discontinuities in a finite element (FE) context is presented. Unlike the standard extended FE method (XFEM), no additional unknowns are introduced at the nodes whose supports are crossed by discontinuities. The method constructs an approximation space consisting of mesh-based, enriched moving least-squares (MLS) functions near discontinuities and standard FE shape functions elsewhere. There is only one shape function per node, and these functions are able to represent known characteristics of the solution such as discontinuities, singularities, etc. The MLS method constructs shape functions based on an intrinsic basis by minimizing a weighted error functional. Thereby, weight functions are involved, and special mesh-based weight functions are proposed in this work. The enrichment is achieved through the intrinsic basis. The method is illustrated for linear elastic examples involving strong and weak discontinuities, and matches optimal rates of convergence even for crack-tip applications. Copyright (c) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据