4.4 Article

Kinetic mechanism of glutaryl-CoA dehydrogenase

期刊

BIOCHEMISTRY
卷 45, 期 51, 页码 15853-15861

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0609016

关键词

-

资金

  1. NINDS NIH HHS [NS39339] Funding Source: Medline

向作者/读者索取更多资源

Glutaryl-CoA dehydrogenase (GCD) is a homotetrameric enzyme containing one noncovalently bound FAD per monomer that oxidatively decarboxylates glutaryl-CoA to crotonyl-CoA and CO2. GCD belongs to the family of acyl-CoA dehydrogenases that are evolutionarily conserved in their sequence, structure, and function. However, there are differences in the kinetic mechanisms among the different acyl-CoA dehydrogenases. One of the unanswered aspects is that of the rate-determining step in the steady-state turnover of GCD. In the present investigation, the major rate-determining step is identified to be the release of crotonyl-CoA product because the chemical steps and reoxidation of reduced FAD are much faster than the turnover of the wild-type GCD. Other steps are only partially rate-determining. This conclusion is based on the transit times of the individual reactions occurring in the active site of GCD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据