4.5 Article

Tuning the hole injection barrier at the organic/metal interface with self-assembled functionalized aromatic thiols

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 51, 页码 26075-26080

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp065821q

关键词

-

向作者/读者索取更多资源

Self-assembled functionalized aromatic thiols (oligophenylenes composed of building blocks of dimethoxy-substituted phenylenes, perfluoro-substituted phenylenes, and a terminal thiol group) were used to tune the hole injection barrier (Delta(h)) of copper(II) phthalocyanine (CuPc) on Au(111). Synchrotron-based high-resolution photoemission spectroscopy study reveals a significant reduction of Delta(h) by as much as 0.75 eV from Delta(h) = 0.9 eV for CuPc/Au(111) to Delta(h) = 0.15 eV for CuPc/BOF/Au(111), where BOF represents 4-pentafluorophenyl-1-(p-thiophenyl)-2,5-dimethoxybenzene. The delocalized pi orbitals of these functionalized aromatic thiols greatly facilitate effective charge transfer (hole or electron) across the SAM interface as compared to alkanethiols, hence making this novel interface modification scheme a simple and effective way to tune the hole injection barrier. This method has potential applications in molecular electronics, organic light-emitting diodes (OLED), organic field-effect transistors (OFETs), and organic solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据