4.6 Article

On the use of finite-difference and neural-network models to evaluate the impact of underground water overexploitation

期刊

HYDROLOGICAL PROCESSES
卷 20, 期 20, 页码 4381-4390

出版社

WILEY
DOI: 10.1002/hyp.6173

关键词

overexploitation; spring flow; mathematical model; artificial neural networks; dune aquifer

向作者/读者索取更多资源

The purpose of this study is to include expert knowledge as one part of the modelling system and thereby offer the chance to create a productive interactive system between expert, mathematical model, ASM, and artificial neural networks (ANNs). An attempt to determine outflow-influencing parameters in order to simulate spring flow is presented. The Bouteldja dune aquifer is fed by rains and streaming water on the sandy argillaceous relieves in the Est. The lateral passage to the gravel of the Bouteldja Plain is marked by numerous bogs that correspond to the piezometric level. These bogs have long been an environment for migratory birds and a natural reserve for many species. However, the continued exploitation of about 30 wells has negatively influenced the hydrodynamic equilibrium of the aquifer and has brought a diminution of the sources' capacity. In this study, we tried by using a hydrodynamic model and the neural network to ascertain the state of the resources and to identify the factors responsible for the decreasing flows of the three principal springs of the area (Bougles, Bourdim and Titteri) by using neural networks. The results obtained show a continued exhaustion of the reserve since 1986 with a large cone of depression. The ANNs show that the decrease in flows of the springs is not only due to the unfavourable climatic conditions, but also to the intensive exploitation of the aquifer. These results show that the groundwater reserves are decreasing over time, thus highlighting the need to take some urgent measures to stop this phenomenon. Copyright (c) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据