4.1 Article

Developmental expression of the outer hair cell motor prestin in the mouse

期刊

JOURNAL OF MEMBRANE BIOLOGY
卷 215, 期 1, 页码 49-56

出版社

SPRINGER
DOI: 10.1007/s00232-007-9004-5

关键词

development; mouse outer hair cell; motor protein; hearing; cochlear amplification

资金

  1. NIDCD NIH HHS [R01 DC000273, K08 DC05352, DC00273] Funding Source: Medline

向作者/读者索取更多资源

The development of motor protein activity in the lateral membrane of the mouse outer hair cell (OHC) from postnatal day 5 (P5) to P18 was investigated under whole-cell voltage clamp. Voltage-dependent, nonlinear capacitance (C (v)), which represents the conformational fluctuations of the motor molecule, progressively increased during development. At P12, the onset of hearing in the mouse, C (v) was about 70% of the mature level. C (v) saturated at P18 when hearing shows full maturation. On the other hand, C (lin), which represents the membrane area of the OHC, showed a relatively small increase with development, reaching steady state at P10. This early maturation of linear capacitance is further supported by morphological estimates of surface area during development. These results, in light of recent prestin knockout experiments and our results with quantitative polymerase chain reaction, suggest that, rather than the incorporation of new motors into the lateral membrane after P10, molecular motors mature to augment nonlinear capacitance. Thus, current estimates of motor protein density based on charge movement may be exaggerated. A corresponding indicator of motor maturation, the motor's operating voltage midpoint, V (pkcm), tended to shift to depolarized potentials during postnatal development, although it was unstable prior to P10. However, after P14, V (pkcm) reached a steady-state level near -67 mV, suggesting that intrinsic membrane tension or intracellular chloride, each of which can modulate V (pkcm), may mature at P14. These developmental data significantly alter our understanding of the cellular mechanisms that control cochlear amplification and provide a foundation for future analysis of genetic modifications of mouse auditory development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据