4.6 Article

Evaluation of Phi29-based whole-genome amplification for microarray-based comparative genomic hybridisation

期刊

LABORATORY INVESTIGATION
卷 87, 期 1, 页码 75-83

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/labinvest.3700495

关键词

Phi29; bias; DNA; microarray; CGH

资金

  1. Breast Cancer Now [BREAST CANCER NOW RESEARCH CENTRE] Funding Source: Medline

向作者/读者索取更多资源

For the optimal performance of high throughput genomic technologies sufficient yields of high-quality DNA are crucial. Following microdissection, most samples fail to produce sufficient quantities of DNA for genome-wide experiments. Various PCR-based amplification methods have been used, but these usually produce nonuniform representations of the genome. Bacteriophage Phi29 DNA polymerase random-primed DNA amplification is based on isothermal multiple displacement amplification. We sought to define the genome representation of this method in a bacterial artificial chromosome microarray comparative genomic hybridisation (aCGH) platform. Test genomic female DNA was amplified using Phi29 amplification at four different starting concentrations (0.5, 5, 10 and 50 ng). These products were combined with unamplified and amplified genomic female DNA as reference. In addition, 50 ng of DNA from five microdissected breast cancer frozen samples, were amplified using the same method. Three combinations were performed: unamplified test with unamplified reference, amplified test with unamplified reference and both amplified tumour and reference DNA. aCGH was performed with an in-house 16K BAC platform (a resolution of similar to 100 Kb). Pearson's correlation tests and hierarchical clustering were performed to compare the profiles obtained. aCGH profiles obtained with amplified test and unamplified reference female genomic DNA showed copy number biases throughout the genome. These biases were more conspicuous with smaller amounts of starting material and mapped to regions of known copy number polymorphisms. When similar concentrations of test and reference DNA were amplified, the biases were significantly reduced, rendering accurate profiles. For the tumours, representative profiles were obtained when both test and reference DNA were amplified. Phi29 amplification induces copy number biases and unamplified material remains the gold standard for copy number analysis. For accurate results using Phi29 amplification, samples subjected to aCGH analysis should be combined with reference DNA amplified with the same method, using similar amounts of starting template.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据