4.7 Review

Branched-chain amino acid metabolism in higher plants

期刊

PHYSIOLOGIA PLANTARUM
卷 129, 期 1, 页码 68-78

出版社

WILEY
DOI: 10.1111/j.1399-3054.2006.00800.x

关键词

-

向作者/读者索取更多资源

Valine, leucine and isoleucine contain short branched carbohydrate residues responsible for their classification as branched-chain amino acids (BCAA). Among the proteinogenic amino acids, BCAA show the highest hydrophobicity and are accordingly the major constituents of transmembrane regions of membrane proteins. BCAA cannot be synthesized by humans and thus belong to the essential amino acids. In contrast, plants are able to synthesize these amino acids de novo and are an important source for these compounds in the human diet. However, BCAA cannot only be synthesized in plants, leucine and probably also valine and isoleucine can also be degraded. Many enzymes operating in turnover are found in mitochondria, while some catabolizing activities are located in peroxisomes. The breakdown of BCAA is physically separated from their biosynthesis in chloroplasts. Additionally, in the order of the Capparales, enzymes of the leucine metabolism seem to be evolutionary related to or may even participate in the methionine chain elongation pathway, the early part of the biosynthesis of aliphatic glucosinolates. In summary, in higher plants a complex network of pathways interferes with the homeostasis of Val, Leu and Ile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据